eFlo 2.0
ELECTRONIC GASFLOW METER
OPERATIONS MANUAL

Super Systems Inc.
7205 Edington Drive
Cincinnati, OH 45249
513-772-0060
Fax: 513-772-9466
www.supersystems.com
Switch between Auto and Manual Modes ... 19
Adjust Flow Rate [Manual Mode Only] ... 20
Adjust Setpoint ... 20
Enter Menu .. 20

- Process Variable Menu ... 21
- Units Menu ... 21
- Gas Menu .. 22
- Time Menu .. 22
- Ethernet Communications Menu ... 23
- Serial Communications Menu ... 23
- Flow Alarm Menu ... 24

Maintenance ... 24
Web Interface .. 24
Using the Web Interface ... 24
 - Main Screen .. 25
 - Instrument Information ... 26
 - Diagnostics .. 26
 - Basic Configuration .. 27
 - Instrument Configuration ... 28
 - Interface Configuration ... 29

Alarms .. 30
Warranty .. 31
Revision History ... 32
Appendix 1: Menu Option Tables .. 33
Appendix 2: Verification Procedures ... 34
 - Calibration Verification ... 34
 - Sensor Accuracy Verification ... 34
Appendix 3: Startup Procedures .. 35
Introduction

The eFlo 2.0 instrument is Super Systems Inc.'s latest electronic flow meter. eFlo works by measuring the differential pressure (the difference in pressure of a gas at two points) of a gas flowing through a specially designed opening in the gas flow assembly. Based on properties of the flowed gas, the differential pressure can then be used to calculate the flow rate of the gas.

eFlo 2.0 uses a mathematical curve to calculate the flow of a gas and features built-in diagnostic information, flow rate and pressure alarms, and a flow rate totalizer. The automatic meter can be set to automatic or manual valve control mode. Automatic valve control mode allows the eFlo to use a flow rate or valve position setpoint as a basis for adjusting the valve (and thus the gas flow) using a built-in valve motor. The setpoint can be programmed manually by the user or obtained by the instrument from a 4-20mA analog signal or a digital signal over RS485. Manual valve control mode allows the user to manually set the valve position through the interface.

eFlo 2.0 is built for use in harsh industrial environments.

This manual also covers configuration and control using the eFlo web interface.

Model Numbers

eFlo2.0 model numbers provide details about your eFlo device’s interface type, valve type, and gas type. This is useful information to have available when contacting SSi for technical support.

<table>
<thead>
<tr>
<th>Interface Type</th>
<th>Valve Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>KP= Keypad Interface</td>
<td>A=Automatic Valve</td>
</tr>
<tr>
<td>TS=Touchscreen Interface</td>
<td>M=Manual Valve</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Gas Type</th>
<th>Valve Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>AIR – Air</td>
<td>H2 - Hydrogen</td>
</tr>
<tr>
<td>ARG – Argon</td>
<td>MULT - Multiple Gasses</td>
</tr>
<tr>
<td>C3H8 – Propane</td>
<td>N2 - Nitrogen</td>
</tr>
<tr>
<td>CH4 – Methane</td>
<td>N2O - Nitrous Oxide</td>
</tr>
<tr>
<td>CO2 - Carbon Dioxide</td>
<td>NAT - Natural Gas</td>
</tr>
<tr>
<td>CRS - Coarse (AutoGen Special)</td>
<td>NH3 - Ammonia</td>
</tr>
<tr>
<td>DA - Disassociated Ammonia</td>
<td>PROY - Propylene Gas (C3H6)</td>
</tr>
<tr>
<td>ENDO - Endothermic Gas</td>
<td>TRM - Trim (AutoGen Special)</td>
</tr>
</tbody>
</table>

Example:

141.KP.M.ENDO

Indicates eFlo 2.0

Keypad Interface

Manual Valve

Endothermic Gas
Safety Information
Observe the following safety requirements when configuring, operating, servicing, or maintaining the eFlo instrumentation. If the device is used in a manner not specified in this manual, protection provided by the equipment may be impaired.

WARNING!

The eFlo instrument is NOT guaranteed to provide gas shutoff, nor is it designed to do so. For reliable gas shutoff, incorporate a valve that provides positive gas shutoff. Ensure that all gas flow equipment is in compliance with National Fire Protection Agency (NFPA) requirements, including those found in NFPA 86. Failure to follow these requirements could result in flammable gas leaks into the unit.

Ensure that the air and gas mixture ratio settings are within the specifications provided in this manual. Exceeding specified values could result in hazardous conditions.

Specifications

The specifications for the eFlo instrument are as follows.

<table>
<thead>
<tr>
<th>Specifications</th>
<th>Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>Weight</td>
<td>10.4 lbs (4.76kg)</td>
</tr>
<tr>
<td>Power Required</td>
<td>24 VDC@ 750 mA</td>
</tr>
<tr>
<td>Enclosure Rating</td>
<td>IP10</td>
</tr>
<tr>
<td>Accuracy</td>
<td>4%</td>
</tr>
<tr>
<td>Repeatability</td>
<td>2%</td>
</tr>
<tr>
<td>Turndown Ratio</td>
<td>6:1</td>
</tr>
<tr>
<td>Medium Temperature Limits</td>
<td>-10°F to 125°F (-20°C to 51°C)</td>
</tr>
<tr>
<td>Ambient Temperature Limits</td>
<td>-10°F to 125°F (-20°C to 51°C)</td>
</tr>
<tr>
<td>Maximum Altitude</td>
<td>N/A</td>
</tr>
<tr>
<td>Flow Output Signal (Linear)</td>
<td>4-20mA</td>
</tr>
<tr>
<td>Maximum Output Signal Load</td>
<td>500Ω</td>
</tr>
<tr>
<td>Input Control Signal (Linear)</td>
<td>4-20mA</td>
</tr>
<tr>
<td>Communications</td>
<td>RS485, Ethernet, USB</td>
</tr>
<tr>
<td>Communication Protocol</td>
<td>Modbus RTU</td>
</tr>
</tbody>
</table>

Flow Meter Pressure Limits	2 psig sensors:
	• 2 psig usable limit
	• 4 psig overpressure limit
	5 psig sensors:
	• 5 psig usable limit
	• 10 psig overpressure limit

The installed sensors will be determined by SSI based on pressure specifications & turndown requirements.

See the Calibration Report included with your product for more details.

Table 1 - eFlo Specifications
Installation Procedure

Installing the eFlo unit consists of a mechanical installation and an electrical installation. The mechanical installation includes mounting as well as inlet and outlet piping. The eFlo unit will be assembled prior to shipment. Before beginning installation:

- Ensure that all fittings and connections are tightly secured prior to beginning installation.
- Ensure that all expected components are present. Contact SSi at (513) 772-0060 if you have questions.

Mechanical Installation

Clearance
When installing the device, leave enough room on either side (3” is recommended) to allow users to adjust, remove and replace the existing fittings. Also ensure that the device is installed in a location that allows for easy access to the power connection.

Mounting
Proper mounting is essential for the successful operation of the eFlo instrument. Please use the mounting template (included with the eFlo unit or available at www.supersystems.com/eflo/) to ensure accuracy.

The eFlo can be supported by pipe without using the bolt holes if desired. However, if mounting in this manner, ensure that the pipe is rigid enough to support the weight of the meter.

When installing the device, the shutoff valve or blocking solenoid should ideally be located before the meter.

Plumbing
The outlet openings measure 1.25” NPT. Use of bushings or reducers at these connections is acceptable as long as the smallest pipe diameter is not smaller than the installed orifice plate. See certification for that meter to determine actual orifice diameter. Contact SSi at (513) 772-0060 for questions about pipe sizing.

Thread Sealants:
Teflon or natural gas-rated pipe tape or pipe dope is acceptable for non-corrosive gases. For corrosive gases, pipe tape is not recommended, unless the manufacturer specifies that it is rated for ammonia or other corrosive gases. SSi uses and recommend Oatey, Gasiola, and X-Pando brands of pipe dope for use with corrosive gases.

NOTE: When installing the device, ensure that excessive tape or dope does not fall into the meter, as this can damage sensors, plug sensor lines, prevent flow through the meter, and prevent the device from functioning properly.
Connection Tightness:
After thread sealant is applied, tighten all connections by hand (3.5-6 turns, depending on pipe size), then use the following Turn Past Finger Tightness guide to complete the tightening process:

<table>
<thead>
<tr>
<th>NPT Fitting Size</th>
<th>TPFT (Turns Past Finger Tightness)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1/8”</td>
<td>1.5-2.5</td>
</tr>
<tr>
<td>1/4”</td>
<td>1.5-2.5</td>
</tr>
<tr>
<td>3/8”</td>
<td>1.5-2.5</td>
</tr>
<tr>
<td>1/2”</td>
<td>1.5-2.5</td>
</tr>
<tr>
<td>3/4”</td>
<td>1.5-2.5</td>
</tr>
<tr>
<td>1”</td>
<td>1-2.5</td>
</tr>
<tr>
<td>1 1/4”</td>
<td>1-2.5</td>
</tr>
<tr>
<td>1 1/2”</td>
<td>1-2.5</td>
</tr>
<tr>
<td>2”</td>
<td>1-2.5</td>
</tr>
</tbody>
</table>

Table 2- TPFT Guide

NOTE: Never loosen a fitting for correct alignment. Doing so will prevent the thread from maintaining a proper seal.

CAUTION: Do not overtighten the connection. Overtightening can damage threads, pipes, fittings, and the eFlo device.

Leak Checking
Before operation, all plumbed components should be leak checked with a non-flammable, non-corrosive gas (air, nitrogen, argon, etc.). To avoid damage to sensors and other components, check with SSi for the maximum pressure for the sensor in your eFlo device (the installed sensor may vary based on the parameters needed in your particular application).

IMPORTANT!
Ensure that the inlet pressure is within specified parameters for your eFlo unit.

After completing the above leak check, perform another check using the gas which the eFlo is designed to measure. Leaks may occur with the designated gas that did not occur with the test gas used earlier.

Electrical Connections

<table>
<thead>
<tr>
<th>Wire-In Color</th>
<th>Signal Type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Red</td>
<td>+ VDC</td>
<td>Power Supply (24 VDC @ 750mA)</td>
</tr>
<tr>
<td>Black</td>
<td>- VDC</td>
<td></td>
</tr>
<tr>
<td>Green / Black Stripe</td>
<td>+ RS485</td>
<td>Communications Signal Provided by Modbus Over Serial</td>
</tr>
<tr>
<td>Red / Black Stripe</td>
<td>- RS485</td>
<td></td>
</tr>
<tr>
<td>White / Black Stripe</td>
<td>RLY</td>
<td>Normally Open Relay Contact (24 VDC)</td>
</tr>
<tr>
<td>Orange / Black Stripe</td>
<td>RLY</td>
<td></td>
</tr>
<tr>
<td>Orange</td>
<td>+ mA</td>
<td>Analog Out - Output Flow Signal (4 - 20 mA)</td>
</tr>
</tbody>
</table>
Initial Network Configuration

This section is intended for use by persons familiar with Ethernet network setup.

In order to work correctly, the eFlo unit must be properly configured for the network to which it is connected.

NOTE: By default, the IP address of the eFlo unit is static, and DHCP is disabled. These settings can be adjusted through SSi’s nLocateIP software (see below), the WebInterface, or through the eFlo keypad or touchscreen.

If you already know the IP address of the web interface, skip to the Web Interface section. The network configuration is described in this section.

The eFlo unit will use a default IP address of 192.168.1.200. If the unit is using the default IP address, that IP address can be used to access the web interface (for more information on the web interface, refer to the Web Interface section.)

The IP address of the unit can also be found by using SSi’s nLocateIP software. This method is described below.

nLocateIP Method

Once the eFlo unit is connected to the network, you should be able to locate it on the network using SSi’s nLocateIP software. This program is available from SSi. To use it in locating the eFlo unit on the network, follow these steps on a Windows-based PC:

1. Ensure that the eFlo unit is connected to the network.
2. Open the nLocateIP program.
3. Once the program opens, click the **Search** button. The program will begin searching for SSi devices connected to the network.
4. Look for text similar to the text shown at
right. The corresponding IP address is the IP address that you will want to use. In the example, the IP address is 192.168.1.122.

Once you have found the IP address, you can configure network settings using the Configure button, or complete any additional network configuration using the web interface. See the Interface Configuration section.

If you are unable to find the eFlo unit in the list of devices, it is possible that a network setting (such as subnet mask) may be different, the eFlo unit may be connected to a different network, or the eFlo unit may not be powered on. Network settings can be adjusted through the eFlo keypad (see Network Configuration section below). Otherwise, SSi recommends consulting an IT engineer or network administrator. If needed, call SSi at (513) 772-0060.

Modbus Registers

The eFlo Modbus registers are as follows.

<table>
<thead>
<tr>
<th>Modbus Register Number</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>16</td>
<td>Actual Flow</td>
</tr>
<tr>
<td>17</td>
<td>Flow Sensor mA Input Value</td>
</tr>
<tr>
<td>18</td>
<td>Flow Setpoint</td>
</tr>
<tr>
<td>19</td>
<td>Decimal Place for Display of Flow and Setpoint</td>
</tr>
<tr>
<td>20</td>
<td>Instrument Modbus Address</td>
</tr>
<tr>
<td>21</td>
<td>Not Used</td>
</tr>
<tr>
<td>22</td>
<td>Not Used</td>
</tr>
<tr>
<td>23</td>
<td>Not Used</td>
</tr>
<tr>
<td>24</td>
<td>Not Used</td>
</tr>
<tr>
<td>25</td>
<td>Not Used</td>
</tr>
<tr>
<td>26</td>
<td>Not Used</td>
</tr>
<tr>
<td>27</td>
<td>Not Used</td>
</tr>
<tr>
<td>28</td>
<td>Air Flow</td>
</tr>
<tr>
<td>29</td>
<td>Not Used</td>
</tr>
<tr>
<td>30</td>
<td>Not Used</td>
</tr>
<tr>
<td>31</td>
<td>Not Used</td>
</tr>
<tr>
<td>32</td>
<td>Not Used</td>
</tr>
<tr>
<td>33</td>
<td>Not Used</td>
</tr>
<tr>
<td>34</td>
<td>Not Used</td>
</tr>
<tr>
<td>35</td>
<td>Auto (1) / Manual (0) for Control</td>
</tr>
<tr>
<td>36</td>
<td>Not Used</td>
</tr>
<tr>
<td>37</td>
<td>Reset Totalizer Values to Zero</td>
</tr>
<tr>
<td>38</td>
<td>Not Used</td>
</tr>
<tr>
<td>39</td>
<td>Totalizer Units (0 to 9999)</td>
</tr>
<tr>
<td>40</td>
<td>Totalizer in 10,000s (0 to 9999 -> 0 to 99,990,000)</td>
</tr>
<tr>
<td>41</td>
<td>Totalizer in 10,000,000s (0 to 9999 -> 0 to 999,900,000,000)</td>
</tr>
</tbody>
</table>
 IMPORTANT!

See Appendix 3 for recommended startup procedures involving Zero Tare, Max Tare, and Altitude Adjustment. Following these procedures will provide optimal accuracy and control.

Keypad Operating Procedure

The eFlo system is equipped with a pressure and flow rate alarm (high and low), flow rate totalizer, and integrated valve control. The unit can be operated in either manual or automatic mode for flow rate control. This section of the manual provides an explanation of how the unit is operated, including: valve control modes, flow limit control, flow alarming, flow totalizing, and programming of the unit, as well as basic menu navigation.

 IMPORTANT!

For best long term results, it is recommended that pressure be maintained on the flow meter at all times. Pressure can be maintained when the shut off solenoid/valve is downstream from the outlet of the meter. This will ensure long term calibration and accuracy.

Figure 4 shows the layout of the flow control panel on the Keypad eFlo 2.0 unit. An explanation of the panel’s components is provided as well. The panel layout will be referenced further in this section.
A – LED display
By default, the LED display is used to display the current flow. The LED display can also be used to show the totalizer value, current setpoint, and Setup menu options with associated settings. During active alarms, alarm status messages may also be displayed.

B – Status indicators
These four lights come on in various situations:

Auto: When lit, the eFlo is in Auto valve control mode. When not lit, the unit is in Manual valve control mode.

Alarm: When lit, an alarm is active. See Alarms section for more information.

Open: When lit, the valve is driving open.

Close: When lit, the valve is driving closed.

C – Totalizer button
D – Up button
E – Setpoint button
F – Return button
G – Down button
H – Select button
I – Setup button

Figure 4 - eFlo 2.0 LED Flow Control Panel Layout

Keypad Basic Functions
This section explains the most basic functionality of the eFlo 2.0. Additional options are available in the Setup menu and are explained in more detail in subsequent sections.

View Totalized Flow
To view totalized flow, push . Hold the button down for a few seconds to show the full totalized numeric value by scrolling left.

Reset Totalized Flow
To reset the totalized flow, push and hold for five seconds. Then push to confirm that the value has been reset to zero.

The flow rate totalizer records cumulative flow rates measured by the meter. The totalizer is active at all times. The maximum totalized value is 999,999,999,999 (in any unit of flow measurement).
Switch between Auto and Manual Modes

To switch between Auto and Manual modes, hold the [Select Flow Mode] button for five seconds. When in Auto mode, the Auto light (B) will be active. When in Manual mode, the Auto light (B) will not be active.

Adjust Flow Rate (Manual Mode Only)

To adjust the flow rate while in Manual mode, use the [Flow Rate Up] and [Flow Rate Down] buttons.

Display Setpoint

To display the current setpoint, press the [Setpoint] button.

Adjust Setpoint

To adjust the current setpoint, press and hold the [Setpoint] button and use the [Flow Rate Up] and [Flow Rate Down] buttons.

NOTE: Setpoint can also be adjusted using one of the following methods:
1. Remote analog signal (4-20mA)
2. Remote digital signal with Modbus serial communications over RS485 – Register 18
3. Web interface (refer to Main Screen)

It is important to note that the remote analog setpoint setting overwrites any manual setting. Therefore, if manual control of setpoint is desired, ensure that there is no external signal overwriting the manual setting.

Display Alarm

When an alarm is active, the Alarm light will turn on. A warning message will be displayed on the LED screen as shown. Setpoints for these alarms are set through a Modbus interface or by using the eFlo Web Interface. See Alarms section for more information.

Enter Menu

To enter the Setup menu, hold the [Setpoint] button for five seconds.

Keypad Setup Menu System

To enter the Setup menu, hold the [Setpoint] button for five seconds.
Setup Menu Keypad Functions

When you first enter the setup menu, the eFlo will display P1.00 (the current menu option).

To navigate the setup menu, use \(\uparrow \) and \(\downarrow \) to move vertically through the menu options, and use \(\leftarrow \) and \(\rightarrow \) to move horizontally through the menu options. (Think of \(\leftarrow \) and \(\rightarrow \) as your Right and Left buttons while navigating the menus [see Figure 5 - Visualization of Menu Navigation Functions].)

Once you have reached the desired menu option, press \(\mathbf{\text{Select}} \) to access that option. See Figure 6 - Keypad Menu Navigation Menu for a map of the menu options. The options are described in more detail in the Menu System Details section.
EXAMPLE – To access the “Low Pressure Alarm Limit” option (P330):

- Hold the for five seconds. You will enter the menu at P100.
- Press twice to move (vertically) to P300.
- Press to move (horizontally) to P310.
- Press twice to move (vertically) to P330.
- Press to enter into the menu option.

Once you have entered into a menu option, use and to cycle through options or set values.

When ready to save the current setting or value, press .

To exit the menu option without saving changes, press .

Figure 6 - Keypad Menu Navigation Menu
Exiting the Menu System

To exit the menu system entirely, press \(\text{Return} \) to return to the 100-level menus, then press \(\text{Return} \) again to return to the default eFlo display.

Menu System Details

\(\text{P 100: Process Variable} \) – These values are read-only and are meant for diagnostic purposes.
- \(\text{P1.10: Inlet Pressure} \) – Line Pressure measured by the high pressure sensor; the value is based on the unit set in \(\text{P2.20} \).
- \(\text{P1.20: Gas Temperature} \) – Line Temperature; the value is based on the unit set in \(\text{P2.30} \).
- \(\text{P1.30: Differential Pressure} \) – Difference in pressure measured between the high and low pressure sensors; the value is based on the unit set in \(\text{P2.20} \).

\(\text{P200: Process Options} \) – These values are modifiable and change how the user views the flow rate and process variables. Refer to Appendix 4 for an explanation of the various display options.
- \(\text{P2.10: Flow Units} \) – Unit of flow rate displayed
- \(\text{P2.20: Pressure Units} \) – Unit of pressure displayed
- \(\text{P2.30: Temperature Units} \) – Unit of temperature displayed
- \(\text{P2.40: Display Average} \) – Increasing this value will increase the average of the flow rate being displayed on the main screen [range for this value is 1 to 255]

\(\text{P300: User Alarms} \) – Values are modifiable and allow the user to set custom high and low flow alarms as well as low pressure alarms in addition to the factory low and high pressure alarms
- \(\text{P3.10: Low Flow Alarm Limit} \) – Sets the low flow alarm limit \((0=\text{alarm not set}) \)
- \(\text{P3.20: High Flow Alarm Limit} \) – Sets the high flow alarm limit \((0=\text{alarm not set}) \)
- \(\text{P3.30: Low Pressure Alarm Limit} \) – Sets the low pressure alarm limit \((0=\text{alarm not set}) \)
NOTE: Factory low and high pressure alarms are not viewable or editable

\(\text{P400: Serial Communications} \) – Values are modifiable and are used to set the serial communications. Refer to Appendix 4 for an explanation of the various display options.
- \(\text{P4.10: Baud Rate} \)
- \(\text{P4.20: Address} \)
- \(\text{P4.30: Parity Bits} \)

\(\text{P500: Ethernet Communications} \) – Values are modifiable and are used to set the Ethernet Settings. Refer to Appendix 4 for an explanation of the various display options.
- \(\text{P5.10: DHCP} \) – Enabling allows the unit to automatically obtain addressing
- \(\text{P5.20: IP Octet} \) – Used to manually set the IP address of the device
- \(\text{P5.30: Subnet} \) – Used to manually set the Subnet of the device
- \(\text{P5.40: Gateway} \) – Used to manually set the Gateway of the device
P600: Setup – Values are modifiable and changes important device options. Refer to Appendix 4 for an explanation of the various display options.

NOTE: These options should ONLY be changed if absolutely necessary. Please contact SSi before making changes to these settings.

- **P6.10: Zero Tare** – Resets the zero flow rate of the meter (manual mode with valve closed only)
- **P6.20: Analog Max Flow** – Sets the 4-20mA analog in and out based on desired max flow rate allowable
- **P6.30: Control Mode** – Sets control method between flow rate and valve position
- **P6.40: Gas Type** – Used to set the gas type of the meter **NOTE:** changing this value may limit the amount of flow indicated by the info tag on the front of the meter
- **P6.50: Max Valve Position Tare** – Sets the max position the valve is capable of driving to in valve position mode. (manual mode with valve opened to desired max flow rate)
- **P6.60: Altitude Compensation** – Sets the altitude for the installed location.

Reference [Appendix 1: Menu Option Tables](#) for a detailed chart of parameter options
Touchscreen Operating Procedure

The eFlo system is equipped with a pressure and flow rate alarm (high and low), flow rate totalizer, and integrated valve control. The unit can be operated in either manual or automatic mode for flow rate control. This section of the manual provides an explanation of how the unit is operated, including: valve control modes, flow limit control, flow alarming, flow totalizing, and programming of the unit, as well as basic menu navigation.

IMPORTANT!

For best long term results, it is recommended that pressure be maintained on the flow meter at all times. Pressure can be maintained when the shut off solenoid/valve is downstream from the outlet of the meter. This will ensure long term calibration and accuracy.

Figure 4 shows the layout of the main screen on the Touchscreen eFlo 2.0 unit.
Touchscreen Basic Functions

This section explains the most basic functionality of the eFlo 2.0. Additional options are available in the Setup menu and are explained in more detail in subsequent sections.

View Totalized Flow
To view totalized flow, push \(\sum \). This will bring up the totalizer screen. To return to the main screen, press \(\triangleright \).

Reset Totalized Flow
To reset the totalized flow, push \(\bigcirc \) from the totalizer screen. To return to the main screen, press \(\triangleright \).

Switch between Auto and Manual Modes
To switch between Auto and Manual modes, hold \(\bigcirc \) for five seconds. When in Manual mode, the screen will display a yellow background (see below).

The flow rate totalizer records cumulative flow rates measured by the meter. The totalizer is active at all times. The maximum totalized value is 999,999,999,999 [in any unit of flow measurement].

In Auto mode, the motorized valve will be automatically adjusted based on setpoint.
Adjust Flow Rate (Manual Mode Only)

To adjust the flow rate while in Manual mode, use and .

Adjust Setpoint

To display the current setpoint, press . This will bring up the setpoint screen.

Use the numeric keypad to enter the desired setpoint. Press to accept changes, or press to return to the main screen without saving changes.

NOTE: Setpoint can also be adjusted using one of the following methods:

1. Remote analog signal (4-20mA)
2. Remote digital signal with Modbus serial communications over RS485 – Register 18
3. Web interface (refer to Main Screen).

It is important to note that the remote setpoint setting overwrites any manual setting. Therefore, if manual control of setpoint is desired, ensure that there is no external signal overwriting the manual setting.

Enter Menu

To enter the Setup menus, press .

The Setup menu contains seven options:
Process Variable Menu
These values are read-only and are meant for diagnostic purposes.

Flow – The current flow reading
Inlet Pressure – Line Pressure measured by the high pressure sensor; the value is based on the unit set in the Units menu.
Differential Pressure – Pressure measured by the high and low pressure sensors; the value is based on the unit set in the Units menu.
Gas Temperature – Line Temperature; the value is based on the unit set in the Units menu.
Max Tare Button – used to set the max valve position. The eFlo must be in manual mode. Manually open the valve until the max flow is achieved, then press the button.
Zero Tare Button - used to zero the meter reading. The eFlo must be in manual mode. Manually close the valve, then press the button.

Press 🔄 to return to the menu screen.

Units Menu
These values are modifiable and change how the user views the flow rate and process variables. By default, this menu is passcode-protected. Use the numeric keypad to enter the appropriate security code.

Flow Units – Unit of flow rate displayed
Temperature Units – Unit of temperature displayed
Pressure Units – Unit of pressure displayed

Tap the desired units for each parameter. Press ✅ to accept changes, or press 🔄 to return to the menu screen without saving changes.
Gas Menu

By default, this menu is passcode-protected. Use the numeric keypad to enter the appropriate security code.

Tap the desired gas type. Press \(\checkmark \) to accept changes, or press \(\leftarrow \) to return to the menu screen without saving changes.

NOTE: changing this value may limit the amount of flow indicated by the info tag on the front of the meter

This option should ONLY be changed if absolutely necessary. Please contact SSI before making changes to this setting.

![Gas Menu](image1)

Time Menu

By default, this menu is passcode-protected. Use the numeric keypad to enter the appropriate security code.

Use the numeric keypad to set the date and time of the device.

Use \(\circlearrowleft \) to clear the current selection, and use \(\rightarrow \) to advance to the next input box.

Press \(\checkmark \) to accept changes, or press \(\leftarrow \) to return to the menu screen without saving changes.

![Time Menu](image2)
Ethernet Communications Menu
By default, this menu is passcode-protected. Use the numeric keypad to enter the appropriate security code.

Values are modifiable and are used to set the Ethernet Settings.

Use the numeric keypad to input the desired settings.

IP 1-4 – Used to manually set the IP address of the device
MA 1-4 – Used to manually set the Subnet mask of the device
GW 1-4 – Used to manually set the Gateway of the device
DHCP – Enabling allows the unit to automatically obtain addressing

Use [] to clear the current selection, and use [] to advance to the next input box.

Press [] to accept changes, or press [] to return to the menu screen without saving changes.

Serial Communications Menu

Values are modifiable and are used to set the serial communications.

Baud Rate – Used to select the desired Baud Rate. Tap to select.
Modbus Address – Use the numeric keypad to input the desired settings.

Press [] to accept changes, or press [] to return to the menu screen without saving changes.
Flow Alarm Menu

Display Average – Increasing this value will increase the average of the flow rate being displayed on the main screen (range for this value is 1 to 255)

Max Flow – Sets the 4-20mA analog in and out based on desired max flow rate allowable

Low Flow Alarm Limit – Sets the low flow alarm limit (0=alarm not set)

High Flow Alarm Limit – Sets the high flow alarm limit (0=alarm not set)

Control Mode – Sets control method between flow rate and valve position.

Maintenance

There is no routine maintenance required for the eFlo 2.0 unit. Please contact SSi with any questions not covered in the Troubleshooting Guide.

Web Interface

The eFlo meter is equipped with a web interface that can be accessed using an Internet web browser such as Mozilla Firefox, Google Chrome, or Microsoft Internet Explorer.

In order to open the web interface with a web browser, you will need to know either the IP address or the hostname of the web interface. SSi recommends asking an IT engineer or network administrator to set up the web interface prior to use.

Using the Web Interface
To access the web interface, open a web browser, and in the location bar, enter the IP address or name of the webserver. The main screen will then appear, as shown in Figure 7.
The web interface features several screens. Note that some screens require a login and password. The default login is username admin with password 2 (unless otherwise specified by the customer at the time of order).

- **Main.** This screen shows status information such as flow rate, setpoint, and which LEDs are illuminated on the unit, and the amount of total flow since the previous reset.
- **Instrument Information.** This screen shows eFlo model number, unit serial number, and software version number.
- **Diagnostics.** This screen displays information on pressure differential, inlet pressure, temperature, and density.
- **Basic Configuration.** The Basic Configuration screen displays, and allows you to change, basic operating parameters for the eFlo unit.
- **Instrument Configuration** (login and password required). The Instrument Configuration screen displays, and allows you to change, operating parameters for the eFlo unit.
- **Network Configuration** (login and password required. Using this screen, you can adjust network settings, such as host name and IP address. Note that if DHCP is enabled

Main Screen
The main screen (shown above) provides real-time information on the operation of the eFlo unit. The current gas flow process value and setpoint are displayed, as well as the totalized flow. Four circular icons on the screen represent the four LEDs on the front of the unit; these icons will illuminate and darken along with the corresponding LEDs. The **Open** button will drive the motor to open the valve, and the **Close** button will drive the motor to close the valve.
Instrument Information
The Instrument Information page displays the SSi model number, specific serial number of the eFlo unit, and the current version of the software.

![Instrument Information Web Page](image1)

Diagnostics
This screen displays information on pressure differential, inlet pressure, temperature, and density.

![Diagnostics Web Page](image2)
Basic Configuration

The Basic Configuration page displays current basic parameter values and provides the ability to set, select, and reset values. The parameters are described in more detail below.

Figure 20 - Basic Configuration Web Page

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>RTCC</td>
<td>Sets the date/time (real time calendar clock)</td>
</tr>
<tr>
<td>Setpoint</td>
<td>The current flow setpoint</td>
</tr>
<tr>
<td>Address</td>
<td>The Modbus address of the device - a number from 1-247. The device will respond to 250 universally.</td>
</tr>
<tr>
<td>Baud Rate</td>
<td>The baud rate for communications.</td>
</tr>
<tr>
<td>Serial</td>
<td>The serial port parameter setting.</td>
</tr>
<tr>
<td>Reset Total</td>
<td>Resets the totalized value</td>
</tr>
<tr>
<td>Tare</td>
<td>Resets the zero flow rate of the meter (manual mode only)</td>
</tr>
<tr>
<td>Max Tare</td>
<td>Sets the max position the valve is capable of driving to</td>
</tr>
<tr>
<td>Low Flow Alarm</td>
<td>Sets the low flow alarm limit (0=alarm not set)</td>
</tr>
<tr>
<td>High Flow Alarm</td>
<td>Sets the high flow alarm limit (0=alarm not set)</td>
</tr>
<tr>
<td>Low Pres Alarm</td>
<td>Sets the low pressure alarm limit (0=alarm not set)</td>
</tr>
</tbody>
</table>

Table 5 - Parameters and Descriptions for Basic Configuration
Instrument Configuration

The Instrument Configuration page displays current parameter values and provides the ability to set, select, and reset values. The parameters are described in more detail below.

Figure 21 - Instrument Configuration Web Page

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gas Type</td>
<td>Used to set the gas type of the meter NOTE: changing this value may limit the amount of flow indicated by the info tag on the front of the meter</td>
</tr>
<tr>
<td>Flow Units</td>
<td>Unit of Flow Rate displayed</td>
</tr>
<tr>
<td>Pres. Units</td>
<td>Unit of Pressure displayed</td>
</tr>
<tr>
<td>Temp. Units</td>
<td>Unit of Temperature displayed</td>
</tr>
<tr>
<td>Sensor Ave.</td>
<td>Increasing this value will increase the average of the flow rate being displayed on the main screen [range for this value is 1 to 255]</td>
</tr>
<tr>
<td>Max Flow</td>
<td>Sets the 4-20mA analog in and out based on desired max flow rate allowable</td>
</tr>
<tr>
<td>Ctrl Mode</td>
<td>Sets the control mode between flow rate and valve position</td>
</tr>
</tbody>
</table>

Table 6 - Parameters and Descriptions for Instrument Configuration
Interface Configuration

The Interface Configuration page allows you to view network settings and change certain settings as well. **Super Systems Inc. recommends consulting an IT engineer or network administrator before changing any of these settings.**

The first two fields on the page show the MAC address and Host Name. The MAC address should not be changed. The Host Name can be changed as needed.

To enable dynamic assignment of IP addresses, click on the **Enable DHCP** checkbox. Dynamic assignment means that the eFlo unit’s IP address on the network will be assigned automatically, preventing IP address conflicts. The network must support dynamic IP assignment in order for this to work.

If Enable DHCP is not checked, IP and other settings can be changed manually. **These settings should be verified with your network administrator before being changed.** Failure to do so could result in IP conflicts and other network issues.
Alarms

<table>
<thead>
<tr>
<th>Alarm Code</th>
<th>Possible Causes</th>
<th>Possible Corrective Actions</th>
</tr>
</thead>
<tbody>
<tr>
<td>LoPr - Low Pressure</td>
<td>Activated when low pressure has been indicated based on either factory or user specified values</td>
<td>Increase regulator pressure</td>
</tr>
<tr>
<td></td>
<td>factory values are not editable and cannot be deactivated; call SSi with any questions</td>
<td>Verify all upstream solenoids and/or ball valves are open</td>
</tr>
<tr>
<td></td>
<td></td>
<td>make sure not to exceed pressure limits for the sensors indicated on page 6</td>
</tr>
<tr>
<td>hiPr - High Pressure</td>
<td>Activated when high pressure has been indicated based on either factory or user specified values</td>
<td>Decrease regulator pressure below the usable range of the sensors</td>
</tr>
<tr>
<td></td>
<td>If indicated pressure is above the range of the sensor, the meter WILL NOT show accurate values</td>
<td>make sure not to exceed pressure limits for the sensors indicated on page 6</td>
</tr>
<tr>
<td></td>
<td>factory values are not editable and cannot be deactivated; call SSi with any questions</td>
<td></td>
</tr>
<tr>
<td>LoFL - Low Flow</td>
<td>Activated when low flow has been indicated based on user specified values</td>
<td>Increase flow rate on meter to a value above what has been set</td>
</tr>
<tr>
<td></td>
<td>It is possible that low pressure is limiting the flow rate and pressure should be increased</td>
<td></td>
</tr>
<tr>
<td></td>
<td>It is also possible that high pressure has been achieved and the meter is now reading incorrectly</td>
<td></td>
</tr>
<tr>
<td>hiFL - High Flow</td>
<td>Activated when high flow has been indicated based on user specified values</td>
<td>Increase flow rate on meter to a value above what has been set</td>
</tr>
<tr>
<td></td>
<td>It is possible that low pressure is limiting the flow rate and pressure should be increased</td>
<td></td>
</tr>
</tbody>
</table>

Table 7 - Alarms

If you experience problems and cannot find the solution after troubleshooting, please call SSi Technical Support at (513) 772-0060.
Warranty

Limited Warranty for Super Systems Products:

The Limited Warranty applies to new Super Systems Inc. (SSI) products purchased direct from SSI or from an authorized SSI dealer by the original purchaser for normal use. SSI warrants that a covered product is free from defects in materials and workmanship, with the exceptions stated below.

The limited warranty does not cover damage resulting from commercial use, misuse, accident, modification or alteration to hardware or software, tampering, unsuitable physical or operating environment beyond product specifications, improper maintenance, or failure caused by a product for which SSI is not responsible. There is no warranty of uninterrupted or error-free operation. There is no warranty for loss of data—you must regularly back up the data stored on your product to a separate storage product. There is no warranty for product with removed or altered identification labels. SSI DOES NOT PROVIDE ANY OTHER WARRANTIES OF ANY KIND, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OR CONDITIONS OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. SOME JURISDICTIONS DO NOT ALLOW THE LIMITATION OF IMPLIED WARRANTIES, SO THIS LIMITATION MAY NOT APPLY TO YOU. SSI is not responsible for returning to you product which is not covered by this limited warranty.

If you are having trouble with a product, before seeking limited warranty service, first follow the troubleshooting procedures that SSI or your authorized SSI dealer provides.

SSI will replace the PRODUCT with a functionally equivalent replacement product, transportation prepaid after PRODUCT has been returned to SSI for testing and evaluation. SSI may replace your product with a product that was previously used, repaired and tested to meet SSI specifications. You receive title to the replaced product at delivery to carrier at SSI shipping point. You are responsible for importation of the replaced product, if applicable. SSI will not return the original product to you; therefore, you are responsible for moving data to another media before returning to SSI, if applicable. Data Recovery is not covered under this warranty and is not part of the warranty returns process. SSI warrants that the replaced products are covered for the remainder of the original product warranty or 90 days, whichever is greater.
Revision History

<table>
<thead>
<tr>
<th>Rev.</th>
<th>Description</th>
<th>Date</th>
<th>MCO #</th>
</tr>
</thead>
<tbody>
<tr>
<td>-</td>
<td>First release</td>
<td>5/24/2018</td>
<td>2234</td>
</tr>
<tr>
<td>A</td>
<td>Additional Flow and Pressure Units. Updated Keypad information. Updated navigation map for LED model, added Altitude Compensation description, added startup procedure Appendix, added miscellaneous conditions information and IP information</td>
<td>2/21/2019</td>
<td>2256</td>
</tr>
<tr>
<td>B</td>
<td>Added model number information</td>
<td>5/3/2019</td>
<td>2265</td>
</tr>
</tbody>
</table>
Appendix 1: Menu Option Tables

Table 1: Flow Units

<table>
<thead>
<tr>
<th>Value</th>
<th>Flow Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>cfH</td>
<td>CFH</td>
</tr>
<tr>
<td>m³/h</td>
<td>m³/h</td>
</tr>
<tr>
<td>l/hr</td>
<td>l/hr</td>
</tr>
<tr>
<td>gph</td>
<td>gph</td>
</tr>
<tr>
<td>CFM</td>
<td>CFM</td>
</tr>
<tr>
<td>m³/min</td>
<td>m³/min</td>
</tr>
<tr>
<td>l/min</td>
<td>l/min</td>
</tr>
<tr>
<td>gpm</td>
<td>gpm</td>
</tr>
<tr>
<td>lb/h</td>
<td>lb/h</td>
</tr>
<tr>
<td>kg/h</td>
<td>kg/h</td>
</tr>
</tbody>
</table>

Table 2: Pressure Units

<table>
<thead>
<tr>
<th>Value</th>
<th>Pressure Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>mH2O</td>
<td>mH2O</td>
</tr>
<tr>
<td>PSI</td>
<td>PSI</td>
</tr>
<tr>
<td>PSI</td>
<td>PSI</td>
</tr>
<tr>
<td>OSI</td>
<td>OSI</td>
</tr>
<tr>
<td>mBar</td>
<td>mBar</td>
</tr>
<tr>
<td>kPa</td>
<td>kPa</td>
</tr>
<tr>
<td>mmHg</td>
<td>mmHg</td>
</tr>
<tr>
<td>mmH2O</td>
<td>mmH2O</td>
</tr>
</tbody>
</table>

Table 3: Temperature Units

<table>
<thead>
<tr>
<th>Value</th>
<th>Temperature Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>°F</td>
<td>°F</td>
</tr>
<tr>
<td>°C</td>
<td>°C</td>
</tr>
</tbody>
</table>

Table 4: Baud Rate

<table>
<thead>
<tr>
<th>Value</th>
<th>Baud Rate</th>
</tr>
</thead>
<tbody>
<tr>
<td>1200</td>
<td>1200</td>
</tr>
<tr>
<td>2400</td>
<td>2400</td>
</tr>
<tr>
<td>4800</td>
<td>4800</td>
</tr>
<tr>
<td>9600</td>
<td>9600</td>
</tr>
<tr>
<td>14400</td>
<td>14400</td>
</tr>
<tr>
<td>19200</td>
<td>19200</td>
</tr>
<tr>
<td>28800</td>
<td>28800</td>
</tr>
<tr>
<td>38400</td>
<td>38400</td>
</tr>
<tr>
<td>57600</td>
<td>57600</td>
</tr>
<tr>
<td>76800</td>
<td>76800</td>
</tr>
<tr>
<td>115200</td>
<td>115200</td>
</tr>
</tbody>
</table>

Table 5: Parity Option

<table>
<thead>
<tr>
<th>Value</th>
<th>Parity Option</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bn1</td>
<td>BN1</td>
</tr>
<tr>
<td>BE1</td>
<td>BE1</td>
</tr>
<tr>
<td>Bn2</td>
<td>BN2</td>
</tr>
</tbody>
</table>

Table 6: DHCP Enable

<table>
<thead>
<tr>
<th>Value</th>
<th>DHCP Enable</th>
</tr>
</thead>
<tbody>
<tr>
<td>dhcp</td>
<td>On</td>
</tr>
<tr>
<td>NAa</td>
<td>Off</td>
</tr>
</tbody>
</table>

Table 7: IP Address

<table>
<thead>
<tr>
<th>Value</th>
<th>IP Address</th>
</tr>
</thead>
<tbody>
<tr>
<td>P5.21</td>
<td>0 - 255</td>
</tr>
<tr>
<td>P5.22</td>
<td>0 - 255</td>
</tr>
<tr>
<td>P5.23</td>
<td>0 - 255</td>
</tr>
<tr>
<td>P5.24</td>
<td>0 - 255</td>
</tr>
<tr>
<td>P5.25</td>
<td>0 - 255</td>
</tr>
<tr>
<td>P5.26</td>
<td>0 - 255</td>
</tr>
<tr>
<td>P5.27</td>
<td>0 - 255</td>
</tr>
<tr>
<td>P5.28</td>
<td>0 - 255</td>
</tr>
<tr>
<td>P5.29</td>
<td>0 - 255</td>
</tr>
<tr>
<td>P5.30</td>
<td>0 - 255</td>
</tr>
<tr>
<td>P5.31</td>
<td>0 - 255</td>
</tr>
<tr>
<td>P5.32</td>
<td>0 - 255</td>
</tr>
<tr>
<td>P5.33</td>
<td>0 - 255</td>
</tr>
<tr>
<td>P5.34</td>
<td>0 - 255</td>
</tr>
</tbody>
</table>

Table 8: Control Mode

<table>
<thead>
<tr>
<th>Value</th>
<th>Control Mode</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Flow Control</td>
</tr>
<tr>
<td>1</td>
<td>Valve Position</td>
</tr>
</tbody>
</table>

Table 9: Gas Type

<table>
<thead>
<tr>
<th>Value</th>
<th>Gas Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>c2h8</td>
<td>Acetylene</td>
</tr>
<tr>
<td>ar</td>
<td>Air</td>
</tr>
<tr>
<td>nh3</td>
<td>Ammonia</td>
</tr>
<tr>
<td>ar</td>
<td>Argon</td>
</tr>
<tr>
<td>co2</td>
<td>Carbon Dioxide</td>
</tr>
<tr>
<td>co</td>
<td>Carbon Monoxide</td>
</tr>
<tr>
<td>dA</td>
<td>Dissociated Ammonia</td>
</tr>
<tr>
<td>EndM</td>
<td>Endo (w/methane)</td>
</tr>
<tr>
<td>EndP</td>
<td>Endo (w/propane)</td>
</tr>
<tr>
<td>he</td>
<td>Helium</td>
</tr>
<tr>
<td>h2</td>
<td>Hydrogen</td>
</tr>
<tr>
<td>ch4</td>
<td>Methane</td>
</tr>
<tr>
<td>ng</td>
<td>Natural Gas</td>
</tr>
<tr>
<td>n20</td>
<td>Nitrogen</td>
</tr>
<tr>
<td>n20</td>
<td>Nitrous Oxide</td>
</tr>
<tr>
<td>o2</td>
<td>Oxygen</td>
</tr>
<tr>
<td>c3h8</td>
<td>Propane</td>
</tr>
<tr>
<td>c3h6</td>
<td>Propylene</td>
</tr>
</tbody>
</table>

Table 10: Alarms

<table>
<thead>
<tr>
<th>Value</th>
<th>Alarms</th>
</tr>
</thead>
<tbody>
<tr>
<td>LoPr</td>
<td>Low Pressure</td>
</tr>
<tr>
<td>h Pr</td>
<td>High Pressure</td>
</tr>
<tr>
<td>LoFL</td>
<td>Low Flow</td>
</tr>
<tr>
<td>h FL</td>
<td>High Flow</td>
</tr>
</tbody>
</table>
Appendix 2: Verification Procedures

Calibration Verification

The following procedure should be used for verifying the calibration of the flow meter

Items needed
- Calibrated Manometer with a usable range of 0 – 27.7 ”wcg (0 – 1 PSI)
- Certificate of Calibration for the meter being verified

Procedure

1. Connect the high and low pressure ports of the manometer to the high and low pressure ports of the flow meter with the necessary tubing. Open the ball valves
2. Using the Verification Data section of the Certificate of Calibration, enter a flow setpoint based on the points given
3. Once setpoint has been achieved, verify the differential pressure on the manometer is within the tolerance indicated for that point in the Verification Data section
 a. If the differential pressure reading is out of tolerance, verify the pressure and temperature values match the values listed under the “Calibration Condition” section of the “Certificate of Calibration”. If the values are different, you will need to use the equation given on the cert, along with the actual pressure and temperature readings to obtain new differential pressure points. These values can be found in the keypad in the setup menu under the P1.10 & P1.20 parameters or in the touchscreen Process Variable Menu.
4. Once the verification is complete, close the high and low pressure port ball valves and remove the manometer and tubing
5. If the meter is determined to be out of tolerance, continue to the “Sensor Accuracy Verification” section of the manual
6. If the sensors are determined to be within tolerance but the flow rates are not, the meter may need to be recalibrated by SSI if necessary. Please contact SSI for next steps.

Sensor Accuracy Verification

The following procedure should be used for verifying the accuracy of the installed pressure sensors

Items needed
- Calibrated Manometer with a usable range of 0 – 27.7 ”wcg (0 – 1 PSI)

Procedure

1. Connect the high and low pressure ports of the manometer to the high and low pressure ports of the flow meter with the necessary tubing and open the ball valves
2. Go to the “Process Variables” section of the setup menu and check the indicated differential pressure reading. This is found in the P1.30 parameter of the keypad or the Process Variable menu of the touchscreen.

3. The differential pressure reading on the flow meter should be +/- 4% full scale of the compared reading of the manometer
 a. Example: a full scale reading of 12”wcg should be +/- 0.48”wcg

4. If the sensors are determined to be out of tolerance, the sensors may need to be replaced. Please contact SSI for next steps.

Appendix 3: Startup Procedures

For optimal accuracy and control, the following procedure is recommended:

LED model:

1. **Zero Tare** [Resets the zero flow rate of the meter]
 a. With the meter in manual mode, drive the valve completely closed.
 b. Enter the setup menu and enter P6.10
 c. Change the value to 1 and press Select to save.

2. **Max Tare** [Sets the max position the valve can drive to in valve position mode]
 a. With the meter in manual mode, drive the valve open to the desired max flow rate.
 b. Enter the setup menu and enter P6.50
 c. Change the value to 1 and press Select to save.

3. **Altitude Compensation**
 a. Enter the setup menu and enter P6.60
 b. Enter the actual altitude for the installed location.
 c. Press Select to save.

Touchscreen model: